Nginx 事件模块
概述
Nginx 是以事件的触发来驱动的,事件驱动模型主要包括事件收集、事件发送、事件处理(即事件管理)三部分。在Nginx 的工作进程中主要关注的事件是IO 网络事件 和 定时器事件。在生成的 objs 目录文件中,其中ngx_modules.c 文件的内容是Nginx 各种模块的执行顺序,我们可以从该文件的内容中看到事件模块的执行顺序为以下所示:注意:由于是在Linux 系统下,所以支持具体的 epoll 事件模块,接下来的文章结构按照以下顺序来写。
extern ngx_module_t ngx_events_module;
extern ngx_module_t ngx_event_core_module;
extern ngx_module_t ngx_epoll_module;
事件模块接口
ngx_event_module_t 结构体
在 Nginx 中,结构体 ngx_module_t 是 Nginx 模块最基本的接口。对于每一种不同类型的模块,都有一个具体的结构体来描述这一类模块的通用接口,该接口由ngx_module_t 中的成员ctx 管理。在 Nginx 中定义了事件模块的通用接口ngx_event_module_t 结构体,该结构体定义在文件src/event/ngx_event.h 中:
typedef struct {
ngx_str_t *name;
void *(*create_conf)(ngx_cycle_t *cycle);
char *(*init_conf)(ngx_cycle_t *cycle, void *conf);
ngx_event_actions_t actions;
} ngx_event_module_t;
在 ngx_event_module_t 结构体中actions 的类型是ngx_event_actions_t 结构体,该成员结构实现了事件驱动模块的具体方法。该结构体定义在文件src/event/ngx_event.h 中:
typedef struct {
ngx_int_t (*add)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*del)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*enable)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*disable)(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags);
ngx_int_t (*add_conn)(ngx_connection_t *c);
ngx_int_t (*del_conn)(ngx_connection_t *c, ngx_uint_t flags);
ngx_int_t (*process_changes)(ngx_cycle_t *cycle, ngx_uint_t nowait);
ngx_int_t (*process_events)(ngx_cycle_t *cycle, ngx_msec_t timer,
ngx_uint_t flags);
ngx_int_t (*init)(ngx_cycle_t *cycle, ngx_msec_t timer);
void (*done)(ngx_cycle_t *cycle);
} ngx_event_actions_t;
ngx_event_t 结构体
在 Nginx 中,每一个具体事件的定义由结构体ngx_event_t 来表示,该结构体ngx_event_t 用来保存具体事件。该结构体定义在文件 src/event/ngx_event.h 中:
struct ngx_event_s {
void *data;
unsigned write:1;
unsigned accept:1;
unsigned instance:1;
unsigned active:1;
unsigned disabled:1;
unsigned ready:1;
unsigned oneshot:1;
unsigned complete:1;
unsigned eof:1;
unsigned error:1;
unsigned timedout:1;
unsigned timer_set:1;
unsigned delayed:1;
unsigned deferred_accept:1;
unsigned pending_eof:1;
unsigned posted:1;
#if (NGX_WIN32)
unsigned accept_context_updated:1;
#endif
#if (NGX_HAVE_KQUEUE)
unsigned kq_vnode:1;
int kq_errno;
#endif
#if (NGX_HAVE_KQUEUE) || (NGX_HAVE_IOCP)
int available;
#else
unsigned available:1;
#endif
ngx_event_handler_pt handler;
#if (NGX_HAVE_AIO)
#if (NGX_HAVE_IOCP)
ngx_event_ovlp_t ovlp;
#else
struct aiocb aiocb;
#endif
#endif
ngx_uint_t index;
ngx_log_t *log;
ngx_rbtree_node_t timer;
ngx_queue_t queue;
unsigned closed:1;
unsigned channel:1;
unsigned resolver:1;
unsigned cancelable:1;
#if 0
void *thr_ctx;
#if (NGX_EVENT_T_PADDING)
uint32_t padding[NGX_EVENT_T_PADDING];
#endif
#endif
};
在每个事件结构体 ngx_event_t 最重要的成员是handler 回调函数,该回调函数定义了当事件发生时的处理方法。该回调方法原型在文件src/core/ngx_core.h 中:
typedef void (*ngx_event_handler_pt)(ngx_event_t *ev);
ngx_connection_t 结构体
当客户端向 Nginx 服务器发起连接请求时,此时若Nginx 服务器被动接收该连接,则相对Nginx 服务器来说称为被动连接,被动连接的表示由基本数据结构体ngx_connection_t 完成。该结构体定义在文件 src/core/ngx_connection.h 中:
struct ngx_connection_s {
void *data;
ngx_event_t *read;
ngx_event_t *write;
ngx_socket_t fd;
ngx_recv_pt recv;
ngx_send_pt send;
ngx_recv_chain_pt recv_chain;
ngx_send_chain_pt send_chain;
ngx_listening_t *listening;
off_t sent;
ngx_log_t *log;
ngx_pool_t *pool;
struct sockaddr *sockaddr;
socklen_t socklen;
ngx_str_t addr_text;
ngx_str_t proxy_protocol_addr;
#if (NGX_SSL)
ngx_ssl_connection_t *ssl;
#endif
struct sockaddr *local_sockaddr;
socklen_t local_socklen;
ngx_buf_t *buffer;
ngx_queue_t queue;
ngx_atomic_uint_t number;
ngx_uint_t requests;
unsigned buffered:8;
unsigned log_error:3;
unsigned unexpected_eof:1;
unsigned timedout:1;
unsigned error:1;
unsigned destroyed:1;
unsigned idle:1;
unsigned reusable:1;
unsigned close:1;
unsigned sendfile:1;
unsigned sndlowat:1;
unsigned tcp_nodelay:2;
unsigned tcp_nopush:2;
unsigned need_last_buf:1;
#if (NGX_HAVE_IOCP)
unsigned accept_context_updated:1;
#endif
#if (NGX_HAVE_AIO_SENDFILE)
unsigned aio_sendfile:1;
unsigned busy_count:2;
ngx_buf_t *busy_sendfile;
#endif
#if (NGX_THREADS)
ngx_atomic_t lock;
#endif
};
在处理请求的过程中,若 Nginx 服务器主动向上游服务器建立连接,完成连接建立并与之进行通信,这种相对Nginx 服务器来说是一种主动连接,主动连接由结构体ngx_peer_connection_t 表示,但是该结构体 ngx_peer_connection_t 也是 ngx_connection_t 结构体的封装。该结构体定义在文件src/event/ngx_event_connect.h 中:
struct ngx_peer_connection_s {
ngx_connection_t *connection;
struct sockaddr *sockaddr;
socklen_t socklen;
ngx_str_t *name;
ngx_uint_t tries;
ngx_event_get_peer_pt get;
ngx_event_free_peer_pt free;
void *data;
#if (NGX_SSL)
ngx_event_set_peer_session_pt set_session;
ngx_event_save_peer_session_pt save_session;
#endif
#if (NGX_THREADS)
ngx_atomic_t *lock;
#endif
ngx_addr_t *local;
int rcvbuf;
ngx_log_t *log;
unsigned cached:1;
unsigned log_error:2;
};
ngx_events_module 核心模块
ngx_events_module 核心模块的定义
ngx_events_module 模块是事件的核心模块,该模块的功能是:定义新的事件类型,并为每个事件模块定义通用接口ngx_event_module_t 结构体,管理事件模块生成的配置项结构体,并解析事件类配置项。首先,看下该模块在文件src/event/ngx_event.c 中的定义:
ngx_module_t ngx_events_module = {
NGX_MODULE_V1,
&ngx_events_module_ctx,
ngx_events_commands,
NGX_CORE_MODULE,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NGX_MODULE_V1_PADDING
};
其中,模块的配置项指令结构 ngx_events_commands 决定了该模块的功能。配置项指令结构ngx_events_commands 在文件src/event/ngx_event.c 中定义如下:
static ngx_command_t ngx_events_commands[] = {
{ ngx_string("events"),
NGX_MAIN_CONF|NGX_CONF_BLOCK|NGX_CONF_NOARGS,
ngx_events_block,
0,
0,
NULL },
ngx_null_command
};
从配置项结构体中可以知道,该模块只对 events{...} 配置块感兴趣,并定义了管理事件模块的方法ngx_events_block;ngx_events_block 方法在文件src/event/ngx_event.c 中定义:
static char *
ngx_events_block(ngx_conf_t *cf, ngx_command_t *cmd, void *conf)
{
char *rv;
void ***ctx;
ngx_uint_t i;
ngx_conf_t pcf;
ngx_event_module_t *m;
if (*(void **) conf) {
return "is duplicate";
}
ngx_event_max_module = 0;
for (i = 0; ngx_modules[i]; i++) {
if (ngx_modules[i]->type != NGX_EVENT_MODULE) {
continue;
}
ngx_modules[i]->ctx_index = ngx_event_max_module++;
}
ctx = ngx_pcalloc(cf->pool, sizeof(void *));
if (ctx == NULL) {
return NGX_CONF_ERROR;
}
*ctx = ngx_pcalloc(cf->pool, ngx_event_max_module * sizeof(void *));
if (*ctx == NULL) {
return NGX_CONF_ERROR;
}
*(void **) conf = ctx;
for (i = 0; ngx_modules[i]; i++) {
if (ngx_modules[i]->type != NGX_EVENT_MODULE) {
continue;
}
m = ngx_modules[i]->ctx;
if (m->create_conf) {
(*ctx)[ngx_modules[i]->ctx_index] = m->create_conf(cf->cycle);
if ((*ctx)[ngx_modules[i]->ctx_index] == NULL) {
return NGX_CONF_ERROR;
}
}
}
pcf = *cf;
cf->ctx = ctx;
cf->module_type = NGX_EVENT_MODULE;
cf->cmd_type = NGX_EVENT_CONF;
rv = ngx_conf_parse(cf, NULL);
*cf = pcf;
if (rv != NGX_CONF_OK)
return rv;
for (i = 0; ngx_modules[i]; i++) {
if (ngx_modules[i]->type != NGX_EVENT_MODULE) {
continue;
}
m = ngx_modules[i]->ctx;
if (m->init_conf) {
rv = m->init_conf(cf->cycle, (*ctx)[ngx_modules[i]->ctx_index]);
if (rv != NGX_CONF_OK) {
return rv;
}
}
}
return NGX_CONF_OK;
}
另外,在 ngx_events_module 模块的定义中有一个成员ctx 指向了核心模块的通用接口结构。核心模块的通用接口结构体定义在文件src/core/ngx_conf_file.h 中:
typedef struct {
ngx_str_t name;
void *(*create_conf)(ngx_cycle_t *cycle);
char *(*init_conf)(ngx_cycle_t *cycle, void *conf);
} ngx_core_module_t;
因此,ngx_events_module 作为核心模块,必须定义核心模块的通用接口结构。ngx_events_module 模块的核心模块通用接口在文件src/event/ngx_event.c 中定义:
static ngx_core_module_t ngx_events_module_ctx = {
ngx_string("events"),
NULL,
ngx_event_init_conf
};
所有事件模块的配置项管理
Nginx 服务器在结构体 ngx_cycle_t 中定义了一个四级指针成员 conf_ctx,整个Nginx 模块都是使用该四级指针成员管理模块的配置项结构,以下events 模块为例对该四级指针成员进行简单的分析,如下图所示:
每个事件模块可以通过宏定义 ngx_event_get_conf 获取它在create_conf 中分配的结构体的指针;该宏中定义如下:
#define ngx_event_get_conf(conf_ctx, module) \
(*(ngx_get_conf(conf_ctx, ngx_events_module))) [module.ctx_index];
#define ngx_get_conf(conf_ctx, module) conf_ctx[module.index]
从上面的宏定义可以知道,每个事件模块获取自己在 create_conf 中分配的结构体的指针,只需在ngx_event_get_conf 传入参数ngx_cycle_t 中的 conf_ctx 成员,并且传入自己模块的名称即可获取自己分配的结构体指针。
ngx_event_core_module 事件模块
ngx_event_core_module 模块是一个事件类型的模块,它在所有事件模块中的顺序是第一,是其它事件类模块的基础。它主要完成以下任务:
创建连接池;
决定使用哪些事件驱动机制;
初始化将要使用的事件模块;
ngx_event_conf_t 结构体
ngx_event_conf_t 结构体是用来保存ngx_event_core_module 事件模块配置项参数的。该结构体在文件src/event/ngx_event.h 中定义:
typedef struct {
ngx_uint_t connections;
ngx_uint_t use;
ngx_flag_t multi_accept;
ngx_flag_t accept_mutex;
ngx_msec_t accept_mutex_delay;
u_char *name;
#if (NGX_DEBUG)
ngx_array_t debug_connection;
#endif
} ngx_event_conf_t;
ngx_event_core_module 事件模块的定义
该模块在文件 src/event/ngx_event.c 中定义:
ngx_module_t ngx_event_core_module = {
NGX_MODULE_V1,
&ngx_event_core_module_ctx,
ngx_event_core_commands,
NGX_EVENT_MODULE,
NULL,
ngx_event_module_init,
ngx_event_process_init,
NULL,
NULL,
NULL,
NULL,
NGX_MODULE_V1_PADDING
};
其中,模块的配置项指令结构 ngx_event_core_commands 决定了该模块的功能。配置项指令结构 ngx_event_core_commands 在文件 src/event/ngx_event.c 中定义如下:
static ngx_str_t event_core_name = ngx_string("event_core");
static ngx_command_t ngx_event_core_commands[] = {
{ ngx_string("worker_connections"),
NGX_EVENT_CONF|NGX_CONF_TAKE1,
ngx_event_connections,
0,
0,
NULL },
{ ngx_string("connections"),
NGX_EVENT_CONF|NGX_CONF_TAKE1,
ngx_event_connections,
0,
0,
NULL },
{ ngx_string("use"),
NGX_EVENT_CONF|NGX_CONF_TAKE1,
ngx_event_use,
0,
0,
NULL },
{ ngx_string("multi_accept"),
NGX_EVENT_CONF|NGX_CONF_FLAG,
ngx_conf_set_flag_slot,
0,
offsetof(ngx_event_conf_t, multi_accept),
NULL },
{ ngx_string("accept_mutex"),
NGX_EVENT_CONF|NGX_CONF_FLAG,
ngx_conf_set_flag_slot,
0,
offsetof(ngx_event_conf_t, accept_mutex),
NULL },
{ ngx_string("accept_mutex_delay"),
NGX_EVENT_CONF|NGX_CONF_TAKE1,
ngx_conf_set_msec_slot,
0,
offsetof(ngx_event_conf_t, accept_mutex_delay),
NULL },
{ ngx_string("debug_connection"),
NGX_EVENT_CONF|NGX_CONF_TAKE1,
ngx_event_debug_connection,
0,
0,
NULL },
ngx_null_command
};
其中,每个事件模块都需要实现事件模块的通用接口结构 ngx_event_module_t,ngx_event_core_module 模块的上下文结构 ngx_event_core_module_ctx 并不真正的负责网络事件的驱动,所有不会实现ngx_event_module_t 结构体中的成员 actions 中的方法。上下文结构 ngx_event_core_module_ctx 在文件 src/event/ngx_event.c 中定义如下:
ngx_event_module_t ngx_event_core_module_ctx = {
&event_core_name,
ngx_event_core_create_conf,
ngx_event_core_init_conf,
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }
};
在模块定义中,实现了两种方法分别为 ngx_event_module_init 和ngx_event_process_init 方法。在Nginx 启动过程中没有使用 fork 出 worker 子进程之前,先调用 ngx_event_core_module 模块中的 ngx_event_module_init 方法,当fork 出 worker 子进程后,每一个 worker 子进程则会调用 ngx_event_process_init 方法。
ngx_event_module_init 方法在文件src/event/ngx_event.c 中定义:
static ngx_int_t
ngx_event_module_init(ngx_cycle_t *cycle)
{
void ***cf;
u_char *shared;
size_t size, cl;
ngx_shm_t shm;
ngx_time_t *tp;
ngx_core_conf_t *ccf;
ngx_event_conf_t *ecf;
cf = ngx_get_conf(cycle->conf_ctx, ngx_events_module);
ecf = (*cf)[ngx_event_core_module.ctx_index];
if (!ngx_test_config && ngx_process <= NGX_PROCESS_MASTER) {
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,
"using the \"%s\" event method", ecf->name);
}
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);
ngx_timer_resolution = ccf->timer_resolution;
#if !(NGX_WIN32)
{
ngx_int_t limit;
struct rlimit rlmt;
if (getrlimit(RLIMIT_NOFILE, &rlmt) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"getrlimit(RLIMIT_NOFILE) failed, ignored");
} else {
if (ecf->connections > (ngx_uint_t) rlmt.rlim_cur
&& (ccf->rlimit_nofile == NGX_CONF_UNSET
|| ecf->connections > (ngx_uint_t) ccf->rlimit_nofile))
{
limit = (ccf->rlimit_nofile == NGX_CONF_UNSET) ?
(ngx_int_t) rlmt.rlim_cur : ccf->rlimit_nofile;
ngx_log_error(NGX_LOG_WARN, cycle->log, 0,
"%ui worker_connections exceed "
"open file resource limit: %i",
ecf->connections, limit);
}
}
}
#endif
if (ccf->master == 0) {
return NGX_OK;
}
if (ngx_accept_mutex_ptr) {
return NGX_OK;
}
cl = 128;
size = cl
+ cl
+ cl;
#if (NGX_STAT_STUB)
size += cl
+ cl
+ cl
+ cl
+ cl
+ cl
+ cl;
#endif
shm.size = size;
shm.name.len = sizeof("nginx_shared_zone");
shm.name.data = (u_char *) "nginx_shared_zone";
shm.log = cycle->log;
if (ngx_shm_alloc(&shm) != NGX_OK) {
return NGX_ERROR;
}
shared = shm.addr;
ngx_accept_mutex_ptr = (ngx_atomic_t *) shared;
ngx_accept_mutex.spin = (ngx_uint_t) -1;
if (ngx_shmtx_create(&ngx_accept_mutex, (ngx_shmtx_sh_t *) shared,
cycle->lock_file.data)
!= NGX_OK)
{
return NGX_ERROR;
}
ngx_connection_counter = (ngx_atomic_t *) (shared + 1 * cl);
(void) ngx_atomic_cmp_set(ngx_connection_counter, 0, 1);
ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"counter: %p, %d",
ngx_connection_counter, *ngx_connection_counter);
ngx_temp_number = (ngx_atomic_t *) (shared + 2 * cl);
tp = ngx_timeofday();
ngx_random_number = (tp->msec << 16) + ngx_pid;
#if (NGX_STAT_STUB)
ngx_stat_accepted = (ngx_atomic_t *) (shared + 3 * cl);
ngx_stat_handled = (ngx_atomic_t *) (shared + 4 * cl);
ngx_stat_requests = (ngx_atomic_t *) (shared + 5 * cl);
ngx_stat_active = (ngx_atomic_t *) (shared + 6 * cl);
ngx_stat_reading = (ngx_atomic_t *) (shared + 7 * cl);
ngx_stat_writing = (ngx_atomic_t *) (shared + 8 * cl);
ngx_stat_waiting = (ngx_atomic_t *) (shared + 9 * cl);
#endif
return NGX_OK;
}
ngx_event_process_init 方法在文件src/event/ngx_event.c 中定义:
static ngx_int_t
ngx_event_process_init(ngx_cycle_t *cycle)
{
ngx_uint_t m, i;
ngx_event_t *rev, *wev;
ngx_listening_t *ls;
ngx_connection_t *c, *next, *old;
ngx_core_conf_t *ccf;
ngx_event_conf_t *ecf;
ngx_event_module_t *module;
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);
ecf = ngx_event_get_conf(cycle->conf_ctx, ngx_event_core_module);
if (ccf->master && ccf->worker_processes > 1 && ecf->accept_mutex) {
ngx_use_accept_mutex = 1;
ngx_accept_mutex_held = 0;
ngx_accept_mutex_delay = ecf->accept_mutex_delay;
} else {
ngx_use_accept_mutex = 0;
}
#if (NGX_WIN32)
ngx_use_accept_mutex = 0;
#endif
ngx_queue_init(&ngx_posted_accept_events);
ngx_queue_init(&ngx_posted_events);
if (ngx_event_timer_init(cycle->log) == NGX_ERROR) {
return NGX_ERROR;
}
for (m = 0; ngx_modules[m]; m++) {
if (ngx_modules[m]->type != NGX_EVENT_MODULE) {
continue;
}
if (ngx_modules[m]->ctx_index != ecf->use) {
continue;
}
module = ngx_modules[m]->ctx;
if (module->actions.init(cycle, ngx_timer_resolution) != NGX_OK) {
exit(2);
}
break;
}
#if !(NGX_WIN32)
if (ngx_timer_resolution && !(ngx_event_flags & NGX_USE_TIMER_EVENT)) {
struct sigaction sa;
struct itimerval itv;
ngx_memzero(&sa, sizeof(struct sigaction));
sa.sa_handler = ngx_timer_signal_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGALRM, &sa, NULL) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"sigaction(SIGALRM) failed");
return NGX_ERROR;
}
itv.it_interval.tv_sec = ngx_timer_resolution / 1000;
itv.it_interval.tv_usec = (ngx_timer_resolution % 1000) * 1000;
itv.it_value.tv_sec = ngx_timer_resolution / 1000;
itv.it_value.tv_usec = (ngx_timer_resolution % 1000 ) * 1000;
if (setitimer(ITIMER_REAL, &itv, NULL) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"setitimer() failed");
}
}
if (ngx_event_flags & NGX_USE_FD_EVENT) {
struct rlimit rlmt;
if (getrlimit(RLIMIT_NOFILE, &rlmt) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"getrlimit(RLIMIT_NOFILE) failed");
return NGX_ERROR;
}
cycle->files_n = (ngx_uint_t) rlmt.rlim_cur;
cycle->files = ngx_calloc(sizeof(ngx_connection_t *) * cycle->files_n,
cycle->log);
if (cycle->files == NULL) {
return NGX_ERROR;
}
}
#endif
cycle->connections =
ngx_alloc(sizeof(ngx_connection_t) * cycle->connection_n, cycle->log);
if (cycle->connections == NULL) {
return NGX_ERROR;
}
c = cycle->connections;
cycle->read_events = ngx_alloc(sizeof(ngx_event_t) * cycle->connection_n,
cycle->log);
if (cycle->read_events == NULL) {
return NGX_ERROR;
}
rev = cycle->read_events;
for (i = 0; i < cycle->connection_n; i++) {
rev[i].closed = 1;
rev[i].instance = 1;
}
cycle->write_events = ngx_alloc(sizeof(ngx_event_t) * cycle->connection_n,
cycle->log);
if (cycle->write_events == NULL) {
return NGX_ERROR;
}
wev = cycle->write_events;
for (i = 0; i < cycle->connection_n; i++) {
wev[i].closed = 1;
}
i = cycle->connection_n;
next = NULL;
do {
i--;
c[i].data = next;
c[i].read = &cycle->read_events[i];
c[i].write = &cycle->write_events[i];
c[i].fd = (ngx_socket_t) -1;
next = &c[i];
#if (NGX_THREADS)
c[i].lock = 0;
#endif
} while (i);
cycle->free_connections = next;
cycle->free_connection_n = cycle->connection_n;
ls = cycle->listening.elts;
for (i = 0; i < cycle->listening.nelts; i++) {
c = ngx_get_connection(ls[i].fd, cycle->log);
if (c == NULL) {
return NGX_ERROR;
}
c->log = &ls[i].log;
c->listening = &ls[i];
ls[i].connection = c;
rev = c->read;
rev->log = c->log;
rev->accept = 1;
#if (NGX_HAVE_DEFERRED_ACCEPT)
rev->deferred_accept = ls[i].deferred_accept;
#endif
if (!(ngx_event_flags & NGX_USE_IOCP_EVENT)) {
if (ls[i].previous) {
old = ls[i].previous->connection;
if (ngx_del_event(old->read, NGX_READ_EVENT, NGX_CLOSE_EVENT)
== NGX_ERROR)
{
return NGX_ERROR;
}
old->fd = (ngx_socket_t) -1;
}
}
#if (NGX_WIN32)
if (ngx_event_flags & NGX_USE_IOCP_EVENT) {
ngx_iocp_conf_t *iocpcf;
rev->handler = ngx_event_acceptex;
if (ngx_use_accept_mutex) {
continue;
}
if (ngx_add_event(rev, 0, NGX_IOCP_ACCEPT) == NGX_ERROR) {
return NGX_ERROR;
}
ls[i].log.handler = ngx_acceptex_log_error;
iocpcf = ngx_event_get_conf(cycle->conf_ctx, ngx_iocp_module);
if (ngx_event_post_acceptex(&ls[i], iocpcf->post_acceptex)
== NGX_ERROR)
{
return NGX_ERROR;
}
} else {
rev->handler = ngx_event_accept;
if (ngx_use_accept_mutex) {
continue;
}
if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
return NGX_ERROR;
}
}
#else
rev->handler = ngx_event_accept;
if (ngx_use_accept_mutex) {
continue;
}
if (ngx_event_flags & NGX_USE_RTSIG_EVENT) {
if (ngx_add_conn(c) == NGX_ERROR) {
return NGX_ERROR;
}
} else {
if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
return NGX_ERROR;
}
}
#endif
}
return NGX_OK;
}
参考资料:
《深入理解 Nginx 》
Last updated